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A new interconnection network is proposed for the construc-
tion of a massively parallel computer system. The systematic con-
struction of this interconnection network, denoted RCC-FULL, is
performed by methodically connecting together a number of basic
atoms where a basic atom is a set of fully interconnected nodes.
Key communication characteristics are derived and evaluated for
RCC-FULL and efficient routing algorithms, which need only lo-
cal information to route messages between any two nodes, are
also derived. AnO(log (N)) sorting algorithm is shown for RCC-
FULL and RCC-FULL is shown to emulate deterministically the
CRCW PRAM model, with only O(log (N)) degradation in time
performance. Finally, the hardware cost for the RCC-FULL is
estimated as a function of its pin requirements and compared to
that of the binary hypercube and most instances of RCC-FULL
have substantially lower cost. Hence, RCC-FULL appears to be
a particularly effective network for PRAM emulation, and might
be considered as a universal network for future supercomputing
systems. © 1997 Academic Press

1. INTRODUCTION

The theoretical RAM model closely matches real serial
machines in that the observed performance of an algorithm
on a serial machine can be expected to closely match the
theoretical analysis. The parallel model that corresponds to
the RAM is the parallel random access machine (PRAM) [4,
6, 11]. A PRAM is an idealized parallel machine which
consists of a set of processors all of which have unit-time
access to a shared memory. In every step of the PRAM,
each of its processors may execute a private RAM instruction.
In particular, the processors may all simultaneously access
(read from or write into) the common memory. Various types
of PRAMs have been defined, differing in the conventions
used to deal with read/write conflicts, i.e., attempts by several
processors to access the same variable in the same step. In
the most restrictive model, exclusive read–exclusive write or

1This research was supported in part by the Hong Kong Research Council
under Grant RGC/HKUST 100/92E and the Defense Advanced Research
Projects Agency under Grant AFOSR-90-0310, monitored by the Air Force
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EREW PRAMs, no variable may be accessed by more than
one processor in a given step. In contrast, CRCW (concurrent
read–concurrent write) PRAMs allow simultaneous reading
as well as simultaneous writing of each variable, with some
rule defining how to handle simultaneous writing of distinct
variables to the same location.

From a programmer’s perspective, it would be ideal to
develop parallel algorithms for the PRAM. PRAMs are very
convenient for expressing parallel algorithms since one may
concentrate on decomposing the problem at hand, without
having to worry about the communication between the tasks.
For this reason there are many parallel algorithms written for
the PRAM [2, 3, 11, 16, 18]. Unfortunately, the PRAM is not
a very realistic model of parallel computation when the number
of processors grows large. Present and foreseeable technology
does not seem to make it possible to implement this model with
more than a small number of processors. This has led many
researchers to consider the emulation of the idealized parallel
machine, the PRAM, on more realistic parallel machines using
interconnection networks such as the hypercube, the mesh, and
the mesh-of-trees [6, 20, 24, 32].

However, to the best of our knowledge, no practical in-
terconnection network has been proposed to interconnect the
processors of a parallel machine that can emulatedeterministi-
cally any of the PRAM models of the same size in better than
polylogarithmic degradation in time performance. We should
mention here that there are some researchers who were able
to show that certain networks are capable of emulating the
PRAM in better than polylogarithmic degradation in time per-
formance with high probability unlike our deterministic meth-
ods in this paper [21]. Further, there has been some research
conducted that shows that the PRAM can be emulated on, for
example, the reconfigurable mesh in constant time [27]. How-
ever, in this case and many other related cases the size of the
emulating machine is substantially bigger than that of the emu-
lated machine (PRAM) which reduces its practicality. Thus, in
this paper, we investigate a class of modular networks, RCC-
FULL, which is constructed incrementally by compounding
certain primitive graphs together, and we find that this class is
able to emulate PRAM models with better than polylogarith-
mic degradation in time performance. This also means that
the RCC-FULL can emulate any interconnection network of
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the same size with better than polylogarithmic degradation in
time performance.

This paper is organized as follows. In Section 2 we define
the RCC-FULL interconnection network, we present some
of its properties and key communication characteristics, and
we present efficient routing strategies for the RCC-FULL. In
Section 3 we demonstrate the efficient emulation of the PRAM
models on the RCC-FULL. Finally, in Section 4 we analyze
the hardware cost of the RCC-FULL and compare it to that of
the binary hypercube as a function of their pin requirements.

2. RCC-FULL INTERCONNECTION NETWORK

In this section we present a systematic way of construct-
ing the RCC-FULL class of interconnection networks, and we
analyze some of its properties and communication characteris-
tics. Then we present simple routing algorithms for the RCC-
FULL, which need only local information to route messages
between any two nodes in the network.

2.1. Construction

The proposed interconnection network, RCC-FULL, is a
recursively compounded graph constructed incrementally by
systematically connecting together a number of basic atoms.
A basic atom is a set of fully interconnected nodes. An RCC-
FULL is characterized by two parameters,(NA; L), whereNA

is the number of nodes in the basic atom andL is its level of
recursion. An(NA; 0) RCC-FULL is a fully interconnected
network with NA nodes, this is simply a single atom. An
(NA, 1) RCC-FULL is constructed by fully interconnecting
NA basic atoms creating a fully interconnected graph of basic
atoms. Each node in an(NA; 1) RCC-FULL is specified
by an n-bit binary number wheren = 2 log(NA) and for
convenience in exposition we assumeNA is a power of 2.3

The most significantlog(NA) bits identify the atom that this
node belongs to, and the least significantlog(NA) bits are
used to distinguish among nodes within the same atom. The
links between these basic atoms are formed by connecting PE
(processing element)ij to PE ji for all i and j, with i 6= j,
where i and j are binary numbers oflog(NA) bits each.4

This is similar to the construction scheme in [13, 14]. These
interatom links will be referred to as level 1transposelinks.
In general, an(NA; L) RCC-FULL of sizeN is constructed
by fully interconnectingN1=2 copies of(NA; L � 1) RCC-
FULLs whereN1=2 is the number of nodes in an(NA; L�1)
RCC-FULL. Each node in an(NA; L) RCC-FULL is specified
by an m-bit binary number wherem = log(N ). The most
significant (1/2)log(N ) bits identify the(NA; L � 1) RCC-
FULL that this node belongs to, and the least significant (1/
2)log(N ) bits are used to distinguish among nodes within
the same(NA; L � 1) RCC-FULL. The links between these

3All logarithms are taken to base 2.
4ij refers to concatenation of binary numberi with binary numberj.

(NA; L � 1) RCC-FULLs, referred to as levelL transpose
links, are formed by connecting PEij to PE ji for all i and
j, with i 6= j, wherei andj are binary numbers of length (1/
2)log(N) bits each. Figure 1 illustrates the construction of a
(4, 2) RCC-FULL.

2.2. Network Properties

The number of nodes,N (NA; L), of an (NA; L) RCC-
FULL is simply given byN (NA; L) = N (NA; L � 1) �
N (NA; L� 1) whereN (NA; 0) = NA; thus

N (NA; L) = N
2
L

A : (1)

FIG. 1. Construction of a level 2 RCC-FULL where the basic atom is
a 4-node fully connected network. (a) Level 1 RCC-FULL (PE indices are
given in binary). (b) Level 2 RCC-FULL (PE indices are given in decimal).
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TABLE I
Some Key Characteristics of the RCC-FULL and the Hypercube

Network Number of nodes Degree Diameter Network Number of nodes Degree Diameter

(4,0) RCC-FULL 4 3 1 Hypercube 4 2 2

(4,1) RCC-FULL 16 4 3 Hypercube 16 4 4

(4,2) RCC-FULL 256 5 7 Hypercube 256 8 8

(4,3) RCC-FULL 65,536 6 15 Hypercube 65,536 16 16

The diameter of an(NA; L) RCC-FULL, defined as the
maximum number of links that must be traversed through the
shortest path between any two nodes, is denotedD(NA; L).
From the construction of the RCC-FULL we see that
D(NA; L) = 2D(NA; L � 1) + 1, whereD(NA; 0) = 1.
Thus the diameter of an(NA; L) RCC-FULL is given by

D(NA; L) = 2L+1 � 1: (2)

Hence if L is held constant and the network size
grows by increasing the atom sizeNA, the diameter of
RCC-FULL isO(1).

The degree of an(NA; L) RCC-FULL, denotedD(NA; L),
grows by 1 for each additional level of the construction. Thus
�(NA; L) = �(NA; L� 1)+ 1, where�(NA; 0) = NA� 1
and

�(NA; L) = NA + L� 1: (3)

Table I compares favorably the characteristics of the RCC-
FULL to that of the hypercube. Thus, even though the basic
atom is a fully connected network, which is an expensive
network, the way these basic atoms are interconnected together
and their relatively smaller size makes RCC-FULL a fairly
practical network as compared to the hypercube.

An (NA; L) RCC-FULL of sizeN can be viewed as a
network containingN1=2 rows of PEs, where each row is an
(NA; L�1) RCC-FULL, andN1=2 columns of PEs where the
rows are fully interconnected together (see Fig. 1). However,
if we perform a parallel exchange operation of data in the PEs
that are connected by a levelL transposelink, this transposes
the whole network and with this transpose operation all the
columns become effectively fully connected also. This is
a very useful property of RCC-FULL since the PEs of the
columns are not directly interconnected; thus if we have to
perform operations between the PEs within the columns, we
transpose the whole network and all the columns’ PEs would
be able to utilize the same connection structure as the PEs
within the rows of the network. Such atransposecharacteristic
makes writing algorithms for the RCC-FULL quite easy as it
hides the asymmetry of the network.

2.3. Network Communication Measures

The capacity of an interconnection network to deliver
a high volume of messages per unit time is another key
performance measure. This factor is often used to establish
lower bounds on the performance of parallel algorithms and
in VLSI implementations. Algorithms, like sorting and general
divide-and-conquer approaches, usually need to transfer large
quantities of data from one region of the network to the
other. There are many interconnection networks that have
communication diameterO(log(N )), but this small diameter
does not guarantee logarithmic, or even polylogarithmic time
complexity for algorithms that need a high transfer of data
between different regions of the network. There is no one
definition for measuring message capacity. We have chosen
three distinct measures to consider: bisection bandwidth,
message traffic density, and queuing delay.

2.3.1. Bisection Bandwidth

The bisection bandwidth,BB, of an interconnection net-
work is the minimum number of links cut when a network is
partitioned into two equal halves over all partitions. This mea-
sure gives lower bounds for certain parallel algorithms where
large numbers of messages must be sent between two halves
of the network during algorithm execution. When a fully con-
nected network of sizeM is partitioned into two equal halves,
the minimum number of links cut is equal toM2=4. Thus, if in
forming the partition we do not dichotomize any of theN1=2

rows of an(NA; L) RCC-FULL of sizeN nodes, the number
of links cut when it is partitioned into two equal halves isN=4,
since theN1=2 rows are fully interconnected. Moreover, if we
do not dichotomize any of theN1=2 columns of the(NA; L)
RCC-FULL, the number of links cut when it is partitioned
into two equal halves is >N=4 since theN1=2 columns are
fully connected (e.g., see Fig. 1) and links will also be cut
across the rows. Thus, for an(NA; L) RCC-FULL of size
N , BB = N=4, if we do not dichotomize any of theN1=2

rows or dichotomize any of theN1=2 columns. If we allow the
dichotomization of the rows and columns of an(NA; L) RCC-
FULL in the same partition, it is not straightforward to find
the exact number of links cut when it is partitioned into two
equal halves. However, the number of links cut in that case
will be higher thanN=4. This leads to the following corollary.



142 HAMDI AND HALL

Corollary 1. For an (NA; L) RCC-FULL of sizeN the bi-
section bandwidth,BB � N=4, if we do not dichotomize any
of theN1=2 rows or any of theN1=2 columns.

The bisection bandwidth of a hypercube of sizeN is N=2
[13]. Hence, the bisection bandwidth of an(NA; L) RCC-
FULL is close to that of the hypercube for any value ofL.
Further, the bisection bandwidth of the RCC-FULL grows
linearly as a function ofN .

2.3.2. Message Traffic Density

The message traffic density gives an estimate on the average
number of messages passing through a bidirectional link of the
network, when every node of the network communicates with
every other node in the network5 [5, 10, 15]. The message
traffic density is denoted by� and is defined by

� �
Average Message Distance �Number of Nodes

Number of Links
:

(4)

The average message distance in a network is the summa-
tion of distances between all possible pairs of nodes divided by
the number of nodes in the network, where we allow a source
and a destination node to be the same. The average message
distance can be a better indicator of the communication effi-
ciency of the network than its diameter. Now, let us determine
the average distance of an(NA; L) RCC-FULL, DL, under
uniform probability. That is, the probability of a source node
communicating with any destination node is the same. This is
the most general form of finding average distance. If we as-
sume that there is alocality, or sphereof communication [9],
this will only favor the RCC-FULL since it is strongly con-
nected locally through the topology of its basic atoms. We let
s be the source node,d the destination node, andProb(event)
the probability that an event occurs. Then, by examining the
topology of the RCC-FULL, we find:

DL =Prob(s and d are identical)� 0

+ Prob(s and d are in the same row)�DL�1

+ Prob(s and d are in di�erent rows)

� f(s; d): (5)

The value off(s; d) depends on the location ofs and d,
as developed in the following. Lets andd belong to distinct
rows, rs and rd respectively, as illustrated in Fig. 2. Let
p1 (belonging tors) and p2 (belonging tord) be the nodes
connected by the transpose link connectingrs and rd. Then
we can have the following four cases:

5Some authors define the message traffic density by (Average Message
Distance) (Number of Nodes) (Number of Nodes− 1)/(Number of Links).
Our definition of message traffic density is given by Eq. (4) and is based on
the definition given by [5, 10, 15].

1. s = p1 andd = p2
2. s 6= p1 andd = p2
3. s = p1 andd 6= p2
4. s 6= p1 andd 6= p2.

The four cases cover all possible locations ofs andd when
they are in different rows and the probability of the occurrence
of each case, with the associated average distance, is given
below:

Prob(s = p1 and d = p2) = 1=N1=2� 1=N1=2

=1=N

prob(s 6= p1 and d = p2) = (1� 1=N1=2)� 1=N1=2

=(N1=2 � 1)=N

prob(s = p1 and d 6= p2) = 1=N1=2� (1� 1=N1=2)

= (N1=2 � 1)=N

prob(s 6= p1 and d 6= p2) = (1� 1=N1=2)� (1� 1=N1=2)

= ((N1=2 � 1)=N1=2)2:

The above probabilities are used to determinef(s; d) in the
following manner:

f(s; d) =Prob(s = p1 and d = p2)� 1

+ prob(s 6= p1 and d = p2)

� (1 +DL�1) + prob(s = p1 and d 6= p2)

� (1 +DL�1) + prob(s 6= p1 and d 6= p2)

� (1 + 2DL�1): (6)

Next, we derive the probabilities of occurrence of each of the
events needed to find the average distance,DL, as given by
Eq. (5) above:

FIG. 2. Possible locations of source PE and a destination PE when they
are in different rows.
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FIG. 3. Average distance of RCC-FULL and hypercube.

Prob(s and d are identical)

= 1=N1=2
� 1=N1=2 = 1=N

Prob(s and d are in the same row but not identical)

= 1=N1=2
� (1� 1=N1=2) = (N1=2

� 1)=N

Prob(s and d are in di�erent rows)

= 1� (1� 1=N1=2) = (N1=2
� 1)=N1=2:

Thus, having identified all the terms needed to derive the av-
erage distance,DL, we substitute them into Eq. (5) to get

DL =1=N � 0 + (N1=2
� 1)=N

�DL�1 + (N1=2
� 1)=N1=2

� [1=N � 1 + (N1=2
� 1)=N

� (1 +DL�1) + (N1=2
� 1)=N � (1 +DL�1)

+ [(N1=2
� 1)=N1=2]2 � (1 + 2DL�1)]:

DL =

�
2�

3

N1=2
+

1

N

�
DL�1 + 1�

1

N1=2
: (7)

The average distance of a hypercube of sizeN , DH , is given
by [5]

DH =

Plog (N )
i=0

�
log (N )

i

�
i

N
=

1

2
log (N ): (8)

Figure 3 shows the average distance of the(NA; L) RCC-
FULL for L = 0, 1, 2, and 3 and compares it to that for the

hypercube. The average distances of the(NA; 0) and(NA; 1)
RCC-FULL are superior to those of the hypercube. The aver-
age distance of the hypercube is better than that of the(NA; 2)

RCC-FULL only for small network sizes. Finally, the average
distance of the hypercube is better than that of the(NA; 3)

RCC-FULL, especially for small network sizes. Thus, with
the RCC-FULL, we have flexibility in tuning the average dis-
tance performance of the system by choosing the appropriate
network level,L. This flexibility is not present in the hyper-
cube network. Moreover, if we assume that the probability
of local message traffic is higher than that of global message
traffic [9], then the average diameter of the RCC-FULL would
tend to be more attractive than that of the hypercube since the
RCC-FULL is strongly connected locally, as basic atoms are
fully connected.

The next variable needed to evaluate the message traffic
density is the total number of links for each network. First, let
us determine the number of links for an(NA; L) RCC-FULL
of size N . When L = 0, RCC-FULL is a fully connected
network, and the number of links isN (N � 1)=2. In general,
the number of links,NL(NA; L), of (NA; L) RCC-FULL
of size N is given by the total number of links within all
rows,N1=2

� NL(NA; L� 1) plus the total number of level
L transposelinks. This leads to

NL(NA; L) =N1=2
� NL(NA; L� 1)

+ 1
2
N1=2(N1=2

� 1): (9)
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This would give us

NL(NA; 1) = 1=2(N3=2
� N ) + 1=2N1=2(N1=2

� 1)

NL(NA; 2) = 1=2(N5=4
� N3=4)

+ 1=2N1=2(N1=2
� 1)

NL(NA; 3) = 1=2(N9=8 + N � N7=8
�N3=4)

+ 1=2N1=2(N1=2
� 1):

The number of links in a hypercube of sizeN , NLHypercube,
is given by

NLHypercube =
1
2
N log _N: (10)

Figure 4 compares the total number of links for an(NA; L)
RCC-FULL, whereL = 0, 1, 2, and 3 to that for the
hypercube as a function of the network sizes. The(NA; 0)
and(NA; 1) RCC-FULLs have more links than the hypercube.
The (NA; 2) RCC-FULL has more links than the hypercube
only for small network sizes. Finally, the(NA; 3) RCC-FULL
uses fewer links than the hypercube. We have to note that even
though the total number of links gives a rough measure of the
hardware cost of a network, it is not a complete measure.
In Section 4 we will suggest that the hardware cost can be
more accurately represented using packaging pin requirements
analysis.

Having calculated the average distance and the number of
links of the RCC-FULL and the hypercube, we can easily
compute and compare their message traffic densities. The
message traffic density of an(NA; L) RCC-FULL of sizeN
is given by

�RCC-FULL =
((2� 3=N1=2+ 1=N )DL�1 + 1=N1=2)� N

N1=2
�NLL�1 +

1
2
N1=2(N1=2

� 1)
:

(11)

The message density of a hypercube of sizeN is given by

�Hypercube =
1
2
log (N )� N

1
2
log (N )� N

= 1: (12)

Figure 5 depicts the variation of� as a function of the net-
work sizeN for both the RCC-FULL and the hypercube. The
traffic density of an(NA; 0) and(NA; 1) RCC-FULL is bet-
ter than that of the hypercube for all sizes ofN . The traffic
density of an(NA; 2) RCC-FULL is better than that of the
hypercube for large network sizes. Finally, the message traf-
fic density of the hypercube is better than that of the(NA; 3)
RCC-FULL for all cases considered. Again, the RCC-FULL
topology gives us more flexibility in choosing an appropriate
message traffic density depending on the level of recursion,L.
Moreover, the message traffic density of the RCC-FULL de-
creases as the size of the network increases for all levels of

FIG. 4. Number of links of RCC-FULL and hypercube.
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FIG. 5. Traffic density of RCC-FULL and hypercube.

recursion,L. This property is desirable for constructing mas-
sively parallel computers.

2.3.3. Queuing Time Delay

The average distances of the RCC-FULL and the hypercube
give us a measure of their performance under the assumption
that there is no message contention. In order to take message
contention into consideration, we use a simple model for
queuing analysis which has been adopted by many researchers
[5, 9, 10]. An RCC-FULL can be modeled as a communication
network with theith channel represented as an M/M/1 system
with Poisson arrivals at a rate�i and exponential service time
of mean1=�ci. The variable� is the average service rate and
ci is the capacity of theith channel. The assumptions made
in [5, 9, 10] are repeated here for clarity:

1. Each node is equally likely to send a message to every
other node in a fixed time period.

2. The routing is fixed.
3. The load is evenly distributed; i.e.,�i is the same for

all i.
4. The capacity of each link has been optimally assigned.
5. The cost per capacity per link is unity.

Under the above conditions, the delay of the network is
given by

T = D

 
MX
i=1

�
�i

�

�
1=2
!2,

�C(1�D�); (13)

where

M = total number of directed links

� =

MX
i=1

�i = M�i

� =Utilization factor.

C =

MX
i=1

ci = total capacity of the network.

Thus, the above equation can be simplified, and the queuing
delay is given by

T =
DM

�C(1�D�)
: (14)

For an (NA; L) RCC-FULL, D = DL and M =
2NL(NA; L) are given by Eq. (7) and Eq. (9), respectively.
Figure 6 illustrates the variation of the normalized queuing
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FIG. 6. Queuing delay of RCC-FULL and hypercube.

delay versus� for the RCC-FULL and the hypercube. In
this figure, a typical massively parallel network is assumed
with sizeN = 64K processors. The queuing delay increases
exponentially with increasing utilization and saturates at a
particular load. As shown in the figure, the(NA; 1) and
the (NA; 2) RCC-FULLs saturate for higher values of net-
work utilization as compared to the hypercube. However, the
(NA; 3) RCC-FULL saturates for lower values of network
utilization than the hypercube.

Thus, by analyzing the communication measures of the
RCC-FULL and the hypercube, we can conclude that RCC-
FULL appears to be superior to the hypercube whenL � 2.
Moreover, with the RCC-FULL, we have flexibility in tuning
the performance of the system by choosing the appropriate
network level,L.

2.4. Routing

One of the desirable characteristics of a large network of
processors is the ability of the processors to route messages
without total knowledge of all the details in the network [1,
30]. In this section, we propose three routing algorithms
for the RCC-FULL which can be easily implemented at each
processor, and which require only the source address and the
destination address to perform the local routing of messages
at any node in the network. An(NA; L) RCC-FULL with N

nodes can be thought of as a network containingN
1=2 rows of

PEs, each row being an(NA; L � 1) RCC-FULL, andN1=2

rows of PEs are fully interconnected together. Thus, in all the
routing algorithms we describe below, the source node for the
message is PEi1j1, and the destination node for the message is
PEi2j2 wherei1, j1, i2, j2 are binary numbers of (1/2)log (N )
bits each, wherei1 and i2 indicate the row addresses andj1
and j2 indicate the column addresses. Further, we assume
that each PE can simultaneously use all its links for sending
and receiving messages. This is denoted in the literature as a
multiaccepting PE.

ALGORITHM 1. To send a message,m, from a source node
to a destination node, Algorithm 1 performs the following
steps:

1. PEi1j1 sendsm to PE i1i2.
2. PEi1i2 sendsm to PE i2i1.
3. PEi2i1 sendsm to PE i2j2.

Figure 7 illustrates this movement. For an(NA; 1) RCC-
FULL, steps 1 and 3 are routing within a fully interconnected
network. Step 2 is one routing step along a transpose link for
all levels of the RCC-FULL. In general, for an(NA; L) RCC-
FULL, steps 1 and 3 are(NA; L�1) RCC-FULL routing. Via
this recursion the routing algorithm is fully defined. This is
similar to the MIAM routing in [13]. Algorithm 1 can have
a congestion problem when there is a high transfer of data
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FIG. 7. Algorithm 1 routing strategy from source PE,S, to destination
PE,D.

between two rows where all the messages have to use the
same transpose link. This results in anO(N1=2) worst case
routing time. Further, since we are using multiaccepting PEs,
we would not have any congestion problem in the basic atoms
since they are fully connected. Thus, the only congestion
problem that occurs in Algorithm 1 is in its second step, that
is, while using the transpose links.

ALGORITHM 2. The second routing algorithm has been
identified to provide alternate paths to solve the congestion
problem that could occur by using Algorithm 1. Algorithm 2
routes a message,m, from a source node to a destination node
by performing the following steps:

1. PEi1j1 sendsm to PEj1i1.
2. PEj1i1 sendsm to PEj1i2.
3. PEj1i2 sendsm to PE i2j1.
4. PEi2j1 sendsm to PE i2j2.

Figure 8 illustrates this routing movement. For an(NA; 1)
RCC-FULL, steps 2 and 4 are routing within a fully connected
network. Steps 1 and 3 are one routing step each along a
transpose link for all levels of RCC-FULL. In general, for
an (NA; L) RCC-FULL, steps 2 and 4 are routing within an
(NA; L� 1) RCC-FULL. This is similar to the SS routing in
[13].

However, Algorithm 2 can have a congestion problem on its
own. Specifically, when there is a high transfer of messages
between a column and a row, as all the messages have to
traverse the same transpose link resulting in a worst case
routing time ofO(N1=2).

Both Algorithm 1 and Algorithm 2 are examples of oblivi-
ous routing algorithms where the path followed by a message
depends on the source address and the destination address, not
the message distribution or congestion. Leighton has shown
that for the 1-to-1 message routing problem posed in our anal-
ysis, the required number of routing steps� N1=2=2d for a
network of sizeN and degreed [17]. For an(NA; L) RCC-
FULL this produces a lower bound ofN1=2=2(NA + L � 1).
Both Algorithm 1 and Algorithm 2 have a worse case routing
time of O(N1=2). Thus, they fail to reach the optimal obliv-
ious performance. Next we will demonstrate a significantly
better routing performance with a combination of Algorithm 1
and Algorithm 2 which may no longer be considered oblivious.

Both routing algorithms, Algorithm 1 and Algorithm 2,
complement each other; i.e., each algorithm could solve its
congestion problem which results in the worst case routing
time ofO(N1=2) if it has the chance to use the other algorithm
for that specific situation. This leads us to propose a third
routing algorithm, Algorithm 3, which hasO(N1=4) worse
case routing time. It is a three-phase routing algorithm, where

FIG. 8. Algorithm 2 routing strategy from source PE,S, to destination PE,D.
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the first phase implements the routing using Algorithm 1, and
the third phase implements the routing using Algorithm 2.
An intermediate second phase is used to acknowledge receipt
of a subset of all messages transmitted in the first phase.
Before any permutation is routed, each message being routed
is duplicated. Then we use Algorithm 1 to route one set of
the messages. At the second step of Algorithm 1, where we
have to perform a transpose operation which is the source
of the congestion problem, some PEs would have a number
of messages less than or equal toN1=4 to transpose, and
others would have a number of messages greater thanN1=4

to transpose. We allow these PEs to transmit at mostN1=4

messages, dropping all subsequent messages from the network.
At the end of phase 1, some messages would have reached
their destinations. Each PE receiving a message at the end
of phase 1, would acknowledge that to the source PE. The
acknowledgment is needed to prevent the source PEs, whose
messages have successfully reached their final destination,
from sending the duplicates in the final phase of Algorithm
3. Then, in the third phase, we use Algorithm 2 to route the
second set of messages, which have not been acknowledged.
Formally, Algorithm 3 is presented below. Given a message,
m, and source PEi1j1 and destination PEi2j2, Algorithm 3
performs the following steps:

ALGORITHM 3.

Phase 1.

1. PEi1j1 sendsm to PE i1i2.
2. PE i1i2 sendsm to PE i2i1 if the number of received

messages is� N1=4; otherwise, it drops all subsequent
messages from the network.

3. PEi
2
i
1

sendsm to PE i
2
j
2
.

Phase 2.
4. All destination PEs acknowledge the reception of the

message to the source PEs.

Phase 3.
5. PEi

1
j
1

sendsm to PE j
1
i
1
.

6. PEj1i1 sendsm to PE j1i2.
7. PEj1i2 sendsm to PE i2j1.
8. PEi2j1 sendsm to PE i2j2.

Each phase of Algorithm 3 is completely finished before
progressing to the next phase. Note that PEi

1
i
2

of step 2
can receive >N 1=4 messages for transpose link transmission
only at levelL; thus, recursive calls to Phase 1 of Algorithm 3
for lower levels are the same as recursive calls to Algorithm 1.
The acknowledgments of Phase 2 imply the inverse use of level
L transpose links guaranteeing that at mostN1=4 messages are
routed over any levelL transpose link when using Algorithm 1
for Phase 2, so we will use Algorithm 1 for Phase 2. Recursive
calls in Phase 3 will use Algorithm 1.

We will now argue that Algorithm 3 needsO(N1=4) routing
steps in the worse case. The following lemma establishes the
key result.

LEMMA 2. GivenR(N; L) defined as the number of rout-
ing steps taken by Algorithm3 for a levelL RCC-FULL of size
N ; thenR(N; L) � 3N1=4+ 1+ 6�R(N1=2; L� 1) where
R(N; 0) = 1.

Proof. We want to find out what is the worst case routing
time using Algorithm 3 to route a messagem stored in PE
i1j1 and destined to PEi2j2 under any message distribution.
Using the first phase of Algorithm 3 the messagem follows
the path

i
1
j
1
! i

1
i
2
) i

2
i
1
! i

2
j
2
:

The symbol! denotes routing within an(NA; L � 1) RCC-
FULL, and the symbol) denotes routing along a levelL
transposelink. The only congestion problem for the message
m in this routing phase occurs when PEi1i2 hasx messages
(x > 1) to transmit to PEi

2
i
1

along the single transpose
link between them. This means that there arex messages,
including m, which originated in the same row,i1, and are
destined to the same row,i2. If x � N1=4, the x messages
would be routed along that singletransposelink and thus the
messagem originating at PEi

1
j
1

would reach its destination
PE i2j2 in at most2�R(N1=2; L� 1) +N1=4 routing steps.
Further, the source PE,i1j1, would be acknowledged of its
message delivery so that it will not be transmitted again in
Phase 3 of Algorithm 3. The acknowledgment process of
Phase 2 takes at most2 � R(N1=2; L � 1) + N1=4 routing
steps since the levelL transposelinks are used with the same
distribution as in Phase 1 but in the opposite direction. Thus,
the whole process of routing messagem in this case takes at
most4� R(N1=2; L � 1) + 2�N1=4 routing steps.

In the case wherex > N1=4, some messages including say
m have been dropped out of the network. Thus, PEi

1
i
2

sends
m again to PEi2i2 using Phase 3 of Algorithm 3. In this case,
m follows the path

i1j1 ) j1i1 ! j1i2 ) i2j1 ! i2j2:

The only possible congestion at levelL for messagem is along
the secondtransposelink. In this case, PEj1i2 hasy messages
to transmit to PEi2j1 along the singletransposelink between
them. This means that there arey messages, includingm,
which originated in the same column,j

1
(but different rows),

and are destined to the same row,i2. Denote these messages
m1, m2, m3, . . ., my. Each congested message,mi, must
have had a congestion withzi�1 other messages during Phase
1 of Algorithm 3, wherezi > N1=4. Otherwise, they would
have reached their destination using Phase 1, and would not
be routed using Phase 3. Note each of thezi � 1 messages
was destined to the same row asmi andm1, m2, m3, . . ., my

are destined to the same row. Thus,

yX

i=1

zi � N1=2:

Since eachzi > N1=4, y < N1=4 (e.g., in the worse case
y = N1=4

� 1). Therefore, our original message,m, would
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have a maximum congestion ofy < N1=4 in Phase 3 of
Algorithm 3. Hence, we can route our original message,m, in
at most2�R(N1=2; L�1)+N1=4 + 1 routing steps. Hence,
Algorithm 3 takes at most a total of6 � R(N1=2; L � 1) +
3�N1=4 + 1 routing steps. Q.E.D.

The worse case routing time for Algorithm 1 on an
(N1=2; L� 1) RCC-FULL,W (N1=2; L� 1), satisfies

W (N1=2; L � 1) � N1=4 + 2�W (N1=4; L � 2);

since at mostN1=4 messages could be routed along any level
L� 1 transposelink. Thus

W (N1=2; L� 1) �N1=4 +N1=8 +N1=16 + . . .

=O(N1=4):

Since in Algorithm 3 we revert to Algorithm 1 for recur-
sive calls on levelL � 1 or lower, R(N1=2; L � 1) =
W (N1=2; L � 1) and the main theorem follows.

THEOREM 3. Algorithm 3 requires at mostO(N1=4) rout-
ing steps on an(NA; L) RCC-FULL.

3. EMULATION OF THE PRAM ON RCC-FULL

Many parallel algorithms in the literature are designed to
run on a PRAM. PRAMs are very convenient for expressing
parallel algorithms since one may concentrate on decomposing
the problem at hand into simultaneously executable tasks,
without having to worry about the communication between
these tasks. Further, it is quite easy to design parallel
programming languages for such a model [11]. For this reason,
the implementation of certain data movement operations that
will enable realistic parallel architectures to emulate a PRAM
has been considered by many researchers in order to take
advantage of all the parallel algorithms that have been written
for the PRAM and to enable them to write PRAM algorithms
directly on their networks. These data movement operations
are random access read (RAR) and random access write
(RAW), also known as concurrent read and concurrent write,
respectively [25, 26, 29]. They are used to allow a given
parallel architecture to emulate the concurrent read and the
concurrent write capabilities of a CRCW PRAM. These two
data movement operations are implemented using well-defined
routines. We will analyze the time complexity of each of
these routines on the RCC-FULL to find the time complexity
of RAR and RAW operations when performed on the RCC-
FULL. These routines are sorting, compression, ranking,
distribution, and generalization [26, 29]. In asymptotic
analysis we assume that the RCC-FULL level,L, is fixed and
the network sizeN grows large by increasing the atom size,
NA.

3.1. Sorting on RCC-FULL

Now we will identify the time complexity of sorting on
the RCC-FULL. Again, an RCC-FULL of sizeN can be
thought of as a network containingN1=2 rows of PEs andN1=2

columns of PEs and the rows are fully interconnected together.
The sorting algorithm is defined as follows: a collection ofN

elements are distributed in the RCC-FULL, one element per
processor; then viewing the input as anN1=2 � N1=2 array,
the array is sorted into row-major order. The following sorting
algorithm is based on the sorting algorithm given by Marberg
and Gafini [22], and works by alternately transforming the
rows and columns of the RCC-FULL a constant number of
times. The details of the sorting algorithm on the RCC-FULL,
denotedRCC-FULL SORT, are given below:

ALGORITHM RCC-FULL SORT.

1. Sort all the columns downward.
2. Sort all the rows to the right.
3. Rotate each row,i, i � N1=4 (mod N1=2) positions to

the right.
4. Sort all the columns downward.
5. Rotate each row,i, i(modN1=2) positions to the right.
6. Sort all the columns downward.
7. Rotate each row,i, i � N1=4(modN1=2) positions to

the right.
8. Sort all the columns downward.
9. Perform the following two steps three times:

a. Sort all the even-numbered rows to the right and all
odd-numbered rows to the left.

b. Sort all the columns downward.
10. Sort all the rows to the right.

A step-by-step application ofRCC-FULL SORTis shown in
Fig. 9.

Since rotation of elements within a row can be emulated by
sorting along that row, all the steps ofRCC-FULL SORTcan
be implemented by using sorting in a row or column in an
RCC-FULL. For a(NA; 1) RCC-FULL, each row is a fully
connected network; thus sorting the rows of a(NA; 1) RCC-
FULL takesO(log(N )) time, since sortingN elements on a
fully connected network of sizeN takesO(log(N )) time [4,
7]. Sorting on the columns of a(NA; 1) RCC-FULL can be
performed on the RCC-FULL rows after performing a network
transposition, with one parallel exchange operation. One
final transposition returns all data to their desired destinations.
Hence, sorting the columns of a(NA; 1) RCC-FULL takes
O(log(N )) time, and the whole sorting algorithm can be
performed on a(NA; 1) RCC-FULL in O(log(N )) time.
For an(NA; 2) RCC-FULL, each sorting step ofRCC-FULL
SORTwould be sorting on a(NA; 1) RCC-FULL, which each
takesO(log(N )) time as shown above. Consequently, sorting
on a (NA; 2) RCC-FULL takesO(log(N )) time. In general,
for a (NA; L) RCC-FULL, the sorting time,ST (L), is given
by

ST (L) = K1ST (L � 1) +K2; (15)

whereK1 = 15 andK2 = 14, as found fromRCC-FULL SORT.
SinceST (0) = K3 log (N ) with K3 constant [4, 7], then by
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FIG. 9. RCC-FULL SORT on a4� 4 array. (a) Initial data configuration.
(b) After step 1 of RCC-FULL SORT. (c) After step 2 of RCC-FULL SORT.
(d) After step 3 of RCC-FULL SORT. (e) After step 4 of RCC-FULL SORT.
(f) After steps 5 and 6 of RCC-FULL SORT. (g) After steps 7 and 8 of
RCC-FULL SORT. (h) After step 9 of RCC-FULL SORT. (i) After step 10
of RCC-FULL SORT.

solving the recursion we get

ST (L) = KL

1
K3 log N +

1�KL
1

(1�K1)
k2: (16)

Thus ifL is held constant, the time complexity ofRCC-FULL
SORTis O(log(N )) when implemented on the RCC-FULL.

3.2. RAR and RAW Time Complexity

Here we develop the time complexity of compression,
ranking, distribution, and generalization [26, 29] which when
added to the time complexity ofRCC-FULL SORTwould give
us the time complexity of RAR and RAW on the RCC-FULL.
The compression, ranking, distribution, and generalization
routines are all instances of theascendclass of algorithms
[28]. An algorithm is said to be in theascendclass if it
performs a sequence of operations on pairs of data that are
successively20, 21, . . ., 2k�1 locations apart on a problem of
size2k [28].

An algorithm of sizeN = 2k which is in theascendclass
can be performed on an RCC-FULL in the following manner:

1. Perform operations on pairs of data that are successively
20, 21, . . ., 2k=2�1 locations apart.

2. Exchange all the data in the PEs which are directly
connected through a transpose link.

3. Perform operations on pairs of data that are successively

20, 21, . . ., 2k=2�1 locations apart.
4. Exchange all the data in the PEs which are directly

connected through a transpose link.

WhenL = 0, it takes log (N ) steps to perform the above
algorithm on an RCC-FULL since all the PEs are directly
connected together [28]. For a(NA; 1) RCC-FULL steps 1
and 3 are algorithms of size2k=2 in theascendclass performed
on a fully connected network of size2k=2. In the general case,
to perform the above algorithm on a(NA; L) RCC-FULL,
steps 1 and 3 would be the execution of an algorithm of size
2k=2 in the ascendclass on a(NA; L� 1) RCC-FULL. Thus
if we denoteAS(L) to be the number of communication steps
taken on a(NA; L) RCC-FULL to execute an algorithm in
the ascendclass, we get

AS(L) = 2AS(L � 1) + 2; (17)

whereAS(0) = log (N ). Solving this recursion we get

AS(L) = 2L(2 + log N )� 2: (18)

Thus ifL is held constant, the time complexity of an algorithm
in the ascendclass isO(log (N )) when implemented on an
RCC-FULL.

Now, we present a brief introduction of the following sub-
algorithms which are used in the implementation of RAR and
RAW:

3.2.1. Ranking

When some PEs are selected in a network, the rank of a PE
is equal to the number of selected PEs with a smaller index.
The number of communication steps needed by this algorithm
is equal to the number of communication steps needed by an
ascendalgorithm which is equal tolog (N ) for an RCC-FULL.
The number of computation steps is2 log (N ) on the RCC-
FULL.

3.2.2. Compression

When the number of active PEs in a network iss, a
proper subset of all the PEs in the network applying the
compression algorithm on these active elements will move
these active elements to the PEs indexed 0, 1, 2,. . .,
s � 1. The number of communication steps needed by this
algorithm is exactly equal to the number of communication
steps needed by theascendalgorithm. It has no computation
steps. Thus, when implemented on an RCC-FULL, it needs
log (N ) communication steps.

3.2.3. Distribution

Assume that some PEsm of a network each have a datum
dm and a PE destinationhm such that ifi < j thenhi < hj .
Executing the distribution algorithm on the network consists
of routing, for each PEm, the datumdm to the PEhm.
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The distribution algorithm is the inverse of the compression
algorithm and requires the same number of communication
steps.

3.2.4. Generalization

Given a set of PEsm of a network each has a datumdm
and a PE destinationhm such that ifi < j thenhi < hj . The
generalization algorithm consists of routing multiple copies of
the datumdm to the destinationhm�1 + 1 throughhm. The
number of communication steps is equal to that needed by the
ascendalgorithm which islog (N ) steps for the RCC-FULL.
The number of computation steps needed is3 log (N ).

Hence, compression, ranking, distribution, and gener-
alization can each be executed on the RCC-FULL in
O(log (N )) time. A RAR is performed by executing the
sorting subalgorithm twice, the ranking subalgorithm once,
the compression subalgorithm twice, the distribution
subalgorithm once, and the generalization subalgorithm once
[26, 29]. Thus, to perform a RAR operation, an RCC-FULL
requiresO(log (N )) time. A RAW operation is performed by
executing the sorting subalgorithm once, the ranking
subalgorithm once, the compression subalgorithm once, and
the distribution subalgorithm once [26, 29]. Thus, to perform
a RAW operation, an RCC-FULL requiresO(log (N )).
Hence, an RCC-FULL of sizeN can emulate a CRCW
PRAM of the same size with at mostO(log (N )) degradation
in time performance whenL is held constant. This also
means thatO(log (N )) is an upper bound on the time needed
for the RCC-FULL to emulate arbitrary interconnection
networks of the same size. Thus, in some sense the
RCC-FULL can be considered to be a universal network [19].

4. HARDWARE COST

In this section we investigate the amount of hardware needed
by the RCC-FULL under certain packaging constraints for
different network sizes. Then we compare this hardware
complexity to that for the binary hypercube in order to
assess the potential of the RCC-FULL as a practical parallel
machine. Many parallel machines have been constructed using
hypercube interconnections and are commercially available
[31]. One useful measure of hardware cost is the area required
when the entire parallel computer is laid out on a single
sheet of silicon. This measure has been well-studied, and
the very-large-scale integration (VLSI) area requirements of
many interconnection networks are also known. However,
actual parallel machines, especially for large network sizes,
are typically laid out on a number of separate chips, each of
which has a limited number of pins through which connections
can be made to other chips. In most cases the number of pins
available per chip is a more serious limitation than the amount
of area available per chip. This is particularly true for networks
that have a relatively large number of links per processor such
as the hypercube and the RCC-FULL unlike systolic arrays or

networks with very small degrees such as the binary tree and
the 2D mesh [8, 12, 17, 23]. As a result, the pin requirements
of a highly connected parallel computer are a very important
measure of its hardware cost. This has motivated the analysis
presented in this paper regarding the pin requirements of the
RCC-FULL as compared to that of the hypercube.

A package is the entity that houses the implementation of
a computer system. It comes with a variety of forms such as
the integrated circuit chip, a printed circuit board that houses
many of these chips, and a chassis that houses multiple circuit
boards. These packages have a hierarchical relationship; the
low-level packages are housed by a higher level package. All
levels of packages, however, share a common characteristic.
Each package contains PEs and communication links. Some of
these communication links connect PEs within the packages,
and others connect PEs in different packages. The latter
communication links constitute the pin requirements of the
package. As argued before, in our analysis of the hardware
cost of the RCC-FULL and the hypercube, we will concentrate
on the pin requirements of the packages that are needed to
build them. In other words, the VLSI area requirements of
the packages are assumed to be less severe than their pin
requirements.

Let N be the number of network processors, andMCB

be the number of chips to which the network is partitioned.
The goal is to find the minimum number of pins per chip,
MIOC, over all partitions. Hence,MCB should be greater
than or equal to 2 to avoid the trivial solution of having all
processors contained in the same chip, and therefore,MIOC

= 0. For a hypercube network, we assume that it is partitioned
into smaller dimensional hypercubes withMPC processors
each, that is,MPC = N=MCB. Each processor will then be
connected toO(log (N )� log (N=MCB)) = O(log (MCB))

processors in different chips. Thus, the total number of pins
per chip is: MIOC = O(N=MCB(log (MCB))). This
result has been discovered by several researchers [8, 23].

THEOREM 4. For a hypercube network withN processors
partitioned overMCB chips, the pin requirement per chip,
MIOC, is given byMIOC = O(N=MCB(log (MCB))).

The same analysis carried on the chip package level can
be carried on the next higher level, the printed circuit board
level package. In this case, we partition the hypercube
into smaller dimensional hypercubes of sizeMPB proces-
sors each, and we letMBC denote the number of partitions
(e.g., boards). Then, each board will haveN=MBC pro-
cessors. Each processor will be connected toO((log (N ) �

log (N=MBC))) = O(log (MBC)) processors in different
boards. Thus, the total number of I/O ports per board is
MIOB = O(N=MBC(log (MBC))). However, we have
to note that the number of processors per board,MPB, is di-
rectly dependent on the number of processors per chip,MPC.
Hence, if for a specific network, the number of processors per
chip is small because of the pin limitations, then that will di-
rectly affect the number of processors per board. Therefore,
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that would increase the number of boards needed to build the
network, which in turn would increase its hardware cost. Fur-
ther, since a board will contain a hypercube of smaller di-
mension where the processors would be connected to other
processors in other boards, the pin limitations at the board
level packaging would be even more severe than that at the
chip level packaging. Thus, if the partitioning of two given
networks,N1 andN2, at the chip level and the circuit board
level is made under the same assumptions (e.g., smaller di-
mensional hypercube), then ifN1 has more pin requirements
at the chip level thanN2, N1 will definitely have more pin
requirements at the board level thanN2. Consequently, just
analyzing the pin requirements of two networks at the chip
level would give us a clear indication of their hardware cost.
For this reason, we will compare the pin requirements of the
hypercube and the RCC-FULL at the chip level only.

Now, let us determine the pin requirements of an RCC-
FULL of sizeN under the chip level packaging. We carry our
analysis under the following two situations:

Case 1. When the number of RCC-FULL partitions
(chips), MCB, is less than or equal toN1=2. In this
case, we assume that the partitioning is being performed
horizontally as shown in Fig. 10. That is, each chip will
contain an integral number of(NA; L � 1) RCC-FULLs.
This partition scheme would minimize the number of pins per
chip, MIOC. Otherwise,MIOC would include additional
links through the partitioning of(NA; L � 1) RCC-FULLs.
Similar assumptions have been made for the same analysis of
several interconnection networks [8, 12, 17, 23].

FIG. 10. Partitioning of an RCC-FULL whereMCB = N1=2 .

In this case onlytransposelinks would be needed to connect
processors in different chips. Thus, the total number of
pins needed would be exactly equivalent to partitioning a
fully connected network,FCN , of sizeN1=2 since we have
N1=2copies of(NA; L�1) RCC-FULLs. The number of links
in each processor of anN1=2 FCN isN1=2

�1. Again, we let
MCB denote the total number of chips. Each processor will
be connected toO(N1=2

�1�(N1=2=MCB�1)) = O(N1=2
�

N1=2=MCB) processors on different chips. Thus, the pin
requirement per chip isMIOC = O(N1=2=MCB(N1=2

�

N1=2=MCB)) = O(N=MCB � N=MCB2).

FIG. 11. Pin requirements at the chip level for an RCC-FULL and a hypercube in Case 1.
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THEOREM 5. For an (NA; L) RCC-FULL network with
N processors partitioned overMCB chips, the pin require-
ment per chip,MIOC, is given byMIOC = O(N=MCB �

N=MCB2), whereMCB is less than or equal toN1=2.

Thus, whenMCB is less than or equal toN1=2, the pin
requirement of the RCC-FULL is asymptotically less than that
of the hypercube for the same network sizes. Moreover, the
pin requirement of the RCC-FULL, in this case, is independent
of the level of recursion,L; they are all equal. Figure 11
compares the pin requirements at the chip level,MIOC, of
a hypercube network and an RCC-FULL as a function of the
number of processors,N , and the number of chips,MCB. As
depicted in the figure, the chip pin requirement of a hypercube
is higher than that of an RCC-FULL. Thus, the hardware cost
of a hypercube would be higher than that of an RCC-FULL
of the same size. Moreover, since the number of pins per chip
cannot be arbitrarily high (e.g., 1000), many of the hypercube
chip requirements are technologically infeasible (e.g., whenN

is high andMCB is low).

Case 2. We assume that the number of partitions (chips)
of an RCC-FULL isMCB = I � N1=2, where I is an
integer greater or equal to 2. That is, each(NA; L� 1) RCC-
FULL is partitioned over exactlyI chips. An example of this
partitioning is illustrated in Fig. 12.

Thus in this case the number of pins per chips,MIOC,
would correspond totransposelinks and to internal links of an
(NA; L�1) RCC-FULL. The number of pins that correspond
to transpose links areO(N=MCB1 � N=MCB2

1
), where

FIG. 12. Partitioning of an RCC-FULL whereMCB = I �N1=2.

MCB1 = N1=2. Therefore, the pins that correspond to
transposelinks,MIOCT , isO(N1=2

�1) for each(NA; L�1)
RCC-FULL (e.g., each processor except one has a single
transposelink). Moreover, the total number of pins that
correspond totransposelinks is independent of the level of
recursion,L, of an RCC-FULL.

For the number of pins that correspond tointernal links, we
have two cases:

FIG. 13. Pin requirements at the chip level for an RCC-FULL and a hypercube in Case 2.
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A. WhenL = 1, meaning that the rows of an RCC-FULL
are a fully connected network, then the number of pins per
chip that correspond tointernal links isO(N=I � N=I2).

B. WhenL > 1, then the number of pins per chip that
correspond to internal links isO(N1=2=I �N1=2=I2). In this
case, sinceI is less than or equal toN1=2, it would correspond
to Case 1 above of the RCC-FULL. This leads to the following
theorem.

THEOREM 6. For an (NA; L) RCC-FULL network with
N processors partitioned overMCB chips, andMCB =

I � N1=2, the pin requirement per chip,MIOC, is given by
MIOC = O(N=I � N=I2 + N1=2=I � 1) whenL = 1, is
given byMIOC = O(N1=2=I � N1=2=I2 + N1=2=I � 1)

whenL > 1. The first2 terms correspond to pins due to in-
ternal links, and the last2 terms correspond to pins due to
transpose links.

Thus, when the number of chips used in the partitioning
of the network is greater thanN1=2, the pin requirement at
the chip level for a(NA; 1) RCC-FULL is asymptotically
equivalent to that of a hypercube of the same size. On the
other hand, when the level of recursion of the RCC-FULL,L,
is greater than 1, the pin requirement at the chip level of the
RCC-FULL is asymptotically less than those of a hypercube
of the same size. Figure 13 compares the pin requirements at
the chip level,MIOC, of a hypercube network and an RCC-
FULL as a function of the number of processors,N , and the
number of chips.

5. CONCLUSION

We have presented a new interconnection network, RCC-
FULL, for the construction of large scale parallel supercom-
puting systems. Its systematic construction and some of its key
communication properties have been shown and compared fa-
vorably to those of the hypercube. Further, the RCC-FULL
has more flexibility in choosing the desired performance level
through its level of recursion,L, unlike the hypercube. Three
efficient routing algorithms have been derived for the RCC-
FULL which need only local information to route messages
between any two nodes in the network. A sorting algorithm is
shown for RCC-FULL which hasO(log (N )) complexity and
the RCC-FULL has been shown to emulate deterministically
the CRCW PRAM model with onlyO(log (N )) degradation
in time performance. The hardware cost of the RCC-FULL as
a function of its pin limitations has been estimated and com-
pared to that of the hypercube and most instances of RCC-
FULL have substantially lower cost. RCC-FULL appears to
offer particularly good potential as an interconnection network
for systems which emulate the PRAM models and which can
be considered asuniversalnetworks for their ability to emu-
late any other interconnection network of the same size with
small degradation in time performance.

ACKNOWLEDGMENT

The authors thank the anonymous referees, whose valuable comments
improved the quality of the paper.

REFERENCES

1. Agrawal, D. P., Janakiram, V. K., and Pathak, G. C. Evaluating the
performance of multicomputer configurations.IEEE Comput.9, 5 (May
1986), 23–37.

2. Akl, S. G. The Design and Analysis of Parallel Algorithms.Prentice
Hall, Englewood Cliffs, NJ, 1989.

3. Akl, S. G., and Lyons, K. A.Parallel Computational Geometry.Prentice
Hall, Englewood Cliffs, NJ, 1993.

4. Alt, H., Hagerup, T., Mehlhorn, K., and Preparata, F. Deterministic
simulation of idealized parallel computers on more realistic ones.SIAM
J. Comput.16 (Oct. 1987), 808–835.

5. Bhuyan, L. M., and Agrawal, D. P. Generalized hypercube and hyperbus
structures for a computer network.IEEE Trans. Comput.33, 4 (April
1984), 323–333.

6. Borodin, A., and Hopcroft, J. Routing, merging, and sorting in parallel
models of computation.Proc. ACM Symposium Theory Comput.1982,
pp. 338–344.

7. Cole, R. Parallel merge sort.SIAM J. Comput.17 (1988), 770–785.

8. Cypher, R. Theoretical aspects of VLSI pin limitations.SIAM J.
Comput.22 (1993), 356–378.

9. Dandamudi, S. P., and Eager, D. L. Hierarchical interconnection
networks for multicomputer systems.IEEE Trans. Comput.39, 6 (June
1990), 786–797.

10. El-Amawy, A., and Latifi, S. Properties and performance of folded
hypercubes.IEEE Trans. Parallel Distrib. Systems2, 1 (Jan. 1991),
31–42.

11. Fortune, S., and Wyllie, J. Parallelism in random access machines.Proc.
ACM Symposium Theory Comput.(1978), pp. 114–118.

12. Ghosh, J., and Hwang, K. Mapping neural networks onto message-
passing multicomputers.J. Parallel Distrib. Comput.6, 2 (April 1989),
291–330.

13. Hamdi, M., and Hall, R. W. An efficient class of interconnection
networks for parallel computations.Comput. J.37, 3 (1994), 206–
218.

14. Hamdi, M., and Hall, R. W. Compound graph networks for parallel
image processing.Proc. of the 1991 Workshop on Comput. Arch. for
Machine Perception.1991, pp. 365–377.

15. Kumar, J. M., and Patnaik, L. M. Extended hypercube: A hierarchical
interconnection network of hypercube.IEEE Trans. Parallel Distrib.
Systems3, 1 (Jan. 1992), 31–42.

16. Kruskal, C. P., Rudolph, L., and Snir, M. A complexity theory of
efficient parallel algorithms.Theoret. Comput. Sci.71, 1 (Mar. 1990),
95–132.

17. Leighton, T. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes.Morgan Kaufmann, San Mateo, CA, (1993).

18. Leiserson, C. E., and Maggs, B. M. Communication-efficient parallel
algorithms for distributed random-access machines.Algorithmica
(1988), 53–77.

19. Leiserson, C. E. Fat-Trees: Universal networks for hardware-efficient
supercomputing.IEEE Trans. Comput.34 (1985), 892–900.

20. Luccio, F., Pietracaprina, A., and Pucci, G. A new scheme for the
deterministic simulation of PRAMs in VLSI.Algorithmica5 4 (1990),
529–544.

21. Luccio, F., Pietracaprina, A., and Pucci, G. An efficient probabilistic
simulation of PRAMs in VLSI.Inform. Process. Lett.(1988), 141–146.



RCC-FULL: A NETWORK FOR PARALLEL COMPUTATIONS 155

22. Marberg, J. M., and Gafni, E. Sorting in constant number of row and
column phases in a mesh.Algorithmica3, 4 (1988), 561–572.

23. Maresca, M., and Li, H. Polymorphic-torus networks.IEEE Trans.
Comput.38, 9 (Sep. 1989), 1345–1351.

24. Mehlhorn, K., and Vishkin, U. Randomized and deterministic simu-
lations of PRAMs by parallel machines with restricted granularity of
parallel memories.Acta Informat.(1984), 339–374.

25. Miller, R., and Stout, Q. F. Parallel Algorithms for Regular Architec-
tures. MIT Press, Cambridge, MA, 1994.

26. Nassimi, D., and Sahni, S. Data broadcasting in SIMD computers.IEEE
Trans. Comput.30, (1981), 101–107.

27. Olariu, S., Schwing, J. L., and Zhang, J. On the power of two-
dimensional processor arrays with reconfigurable bus systems.Parallel
Process. Lett.1, 1 (Sep. 1991), 29–34.

28. Preparata, F. P., Vuillemin, J. The cube-connected cycles: A versatile
network for parallel computations.Comm. ACM24 (1981), 300–309.

29. Ranka, S., and Sahni, S.Hypercube Algorithms With Applications to
Image Processing and Pattern Recognition.Springer-Verlag, New York,
1990.

30. Reed, D. A., and Fujimoto, R. M.Multicomputer Networks: Message-
Based Parallel Processing.MIT Press, Cambridge, MA, 1987.

31. Trew, A. and Wilson, G. Eds. Past, Present, Parallel: A Survey
of Available Parallel Computer Systems.Springer-Verlag, Berlin/New
York, 1991.

32. Upfal, E., and Wigderson, A. How to share memory in a distributed
system.J. Assoc. Comput. Mach.34 (1987), 116–127.

MOUNIR HAMDI received the B.Sc. with distinction in electrical engineer-
ing from the University of Southwestern Louisiana in 1985, and the M.Sc. and
Ph.D. in electrical engineering from the University of Pittsburgh in 1987 and
1991, respectively. While at the University of Pittsburgh, he was a research
fellow involved with various research projects on interconnection networks,
high-speed communication, parallel algorithms, switching theory, and com-
puter vision. In 1991 he joined the Computer Science Department at Hong
Kong University of Science and Technology as an assistant professor. His
main areas of research are parallel computing, high-speed networks, and ATM
packet switching architectures. Dr. Hamdi has published over 50 papers in
these areas in various journals and conference proceedings. He co-founded
and co-chairs the International Workshop on High-Speed Network Computing,
and has been on the program committees of various international conferences.
Dr. Hamdi is a member of IEEE and ACM.

RICHARD HALL has been a member of the faculty of the Department of
Electrical Engineering at the University of Pittsburgh since 1975. His M.S.
and Ph.D. were awarded from Northwestern University in 1971 and 1975,
both in electrical engineering. He did his undergraduate work in electrical
engineering at Johns Hopkins University. His early research was concerned
with the modeling of mammalian vision. His current research is concerned
with the study of parallel algorithms and architectures for computer vision,
including the development of fast parallel connectivity preserving reduction
and reduction–augmentation algorithms in 2D and 3D image spaces and
applications of 3D mesh architectures.

Received April 30, 1991; revised July 1, 1994; accepted August 23, 1996


